Jordan higher all-derivable points in triangular algebras
نویسندگان
چکیده
منابع مشابه
Left derivable or Jordan left derivable mappings on Banach algebras
Let $mathcal{A}$ be a unital Banach algebra, $mathcal{M}$ be a left $mathcal{A}$-module, and $W$ in $mathcal{Z}(mathcal{A})$ be a left separating point of $mathcal{M}$. We show that if $mathcal{M}$ is a unital left $mathcal{A}$-module and $delta$ is a linear mapping from $mathcal{A}$ into $mathcal{M}$, then the following four conditions are equivalent: (i) $delta$ is a Jordan left de...
متن کاملleft derivable or jordan left derivable mappings on banach algebras
let $mathcal{a}$ be a unital banach algebra, $mathcal{m}$ be a left $mathcal{a}$-module, and $w$ in $mathcal{z}(mathcal{a})$ be a left separating point of $mathcal{m}$. we show that if $mathcal{m}$ is a unital left $mathcal{a}$-module and $delta$ is a linear mapping from $mathcal{a}$ into $mathcal{m}$, then the following four conditions are equivalent: (i) $delta$ is a jordan left de...
متن کاملCharacterizations of Jordan derivations on triangular rings: Additive maps Jordan derivable at idempotents
Let T be a triangular ring. An additive map δ from T into itself is said to be Jordan derivable at an element Z ∈ T if δ(A)B +Aδ(B) + δ(B)A+Bδ(A) = δ(AB+BA) for any A,B ∈ T with AB + BA = Z. An element Z ∈ T is called a Jordan all-derivable point of T if every additive map Jordan derivable at Z is a Jordan derivation. In this paper, we show that some idempotents in T are Jordan all-derivable po...
متن کاملJordan product determined points in matrix algebras
Let Mn(R) be the algebra of all n×n matrices over a unital commutative ring R with 6 invertible. We say that A ∈ Mn(R) is a Jordan product determined point if for every R-module X and every symmetric R-bilinear map {·, ·} : Mn(R)×Mn(R) → X the following two conditions are equivalent: (i) there exists a fixed element w ∈ X such that {x, y} = w whenever x ◦ y = A, x, y ∈ Mn(R); (ii) there exists ...
متن کاملPerturbations of Jordan higher derivations in Banach ternary algebras : An alternative fixed point approach
Using fixed pointmethods, we investigate approximately higher ternary Jordan derivations in Banach ternaty algebras via the Cauchy functional equation$$f(lambda_{1}x+lambda_{2}y+lambda_3z)=lambda_1f(x)+lambda_2f(y)+lambda_3f(z)~.$$
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Linear Algebra and its Applications
سال: 2012
ISSN: 0024-3795
DOI: 10.1016/j.laa.2011.09.030